Transformation matrix

=			
0.9859	0.1676	-0.0000	57.6958
0.1676	-0.9859	-0.0000	-494.7989
-0.0000	0.0000	-1.0000	432.2000
0	0	0	1.0000

[0.985850,	0.167629,	-0.000000, 57	7.695774 ;
	0.167629,	-0.985850,	-0.000000, -49	4.798913 ;
	-0.000000,	0.000000,	-1.000000, 43	2.200000 ;
	0.000000,	0.000000,	0.000000, 1.	000000];

Starting joints

-70.710000, -90.000000, -90.000000, -90.000000, 90.000000, -170.360000

8 unique IK solutions

ik_sols =

т

84.0194	-63.1393	56.3819	96.7574	90.0000	-15.6306
84.0194	-9.2183	-56.3819	155.6002	90.0000	-15.6306
84.0194	-90.0000	89.9562	-89.9562	-90.0000	164.3694
84.0194	-4.6299	-89.9562	4.5861	-90.0000	164.3694
-70.7100	-175.3701	89.9562	175.4139	90.0000	-170.3600
-70.7100	-90.0000	-89.9562	-90.0438	90.0000	-170.3600
-70.7100	-170.7817	56.3819	24.3998	-90.0000	9.6400
-70.7100	-116.8607	-56.3819	83.2426	-90.0000	9.6400

RoboDK 21 IK solutions (only 8 unique)

ik_all =

Columns 1 through 14

-70.7100	84.0118	84.0118	84.0118	-70.7100	84.0118	-70.7100	-70.7100	84.0118	84.0118	84.0118	-70.7100	84.0118	84.0118
-90.0000	-9.0246	-90.0000	-63.4657	-116.5343	-4.5634	-170.9754	-175.4366	-90.0000	-9.0246	-63.4657	-175.4366	-4.5634	-90.0000
-90.0000	-56.9154	90.0000	56.9154	-56.9154	-90.0000	56.9154	90.0000	-270.0000	-56.9154	56.9154	90.0000	-90.0000	90.0000
-90.0000	155.9400	-90.0000	96.5503	83.4497	4.5634	24.0600	175.4366	-90.0000	-204.0600	-263.4497	-184.5634	4.5634	-90.0000
90.0000	90.0000	-90.0000	90.0000	-90.0000	-90.0000	-90.0000	90.0000	-90.0000	90.0000	90.0000	90.0000	270.0000	270.0000
-170.3600	-15.6382	164.3618	-15.6382	9.6400	164.3618	9.6400	-170.3600	164.3618	-15.6382	-15.6382	-170.3600	164.3618	164.3618

Columns 15 through 21

84.0118	84.0118	84.0118	84.0118	84.0118	84.0118	84.0118
-90.0000	-4.5634	-90.0000	-90.0000	-4.5634	-90.0000	-90.0000
-270.0000	-90.0000	90.0000	-270.0000	-90.0000	90.0000	-270.0000
-90.0000	4.5634	-90.0000	-90.0000	4.5634	-90.0000	-90.0000
270.0000	-90.0000	-90.0000	-90.0000	270.0000	270.0000	270.0000
164.3618	-195.6382	-195.6382	-195.6382	-195.6382	-195.6382	-195.6382

84.0194 -63.1393 56.3819 96.7574 90.0000 -15.6306

If the light is green, then the robot is in the first listed configuration (first from the pair F/R, U/D, F/N). In the first case robot is in configuration **Rear**, **Up**, **Flip**, in the second case, robot is in configuration **Rear**, **Down**, **Flip**.

84.0194 -90.0000 89.9562 -89.9562 -90.0000 164.3694

84.0194 -4.6299 -89.9562 4.5861 -90.0000 164.3694

In the first case robot is in configuration **Rear**, **Up**, **No flip**, in the second case, robot is in configuration **Rear**, **Down**, **No flip**.

-70.7100 -175.3701 89.9562 175.4139 90.0000 -170.3600

-70.7100 -90.0000 -89.9562 -90.0438 90.0000 -170.3600

In the first case robot is in configuration Front, Up, Flip, in the second case, robot is in configuration Front, Down, Flip.

-70.7100 -170.7817 56.3819 24.3998 -90.0000 9.6400

-70.7100 -116.8607 -56.3819 83.2426 -90.0000 9.6400

In the first case robot is in configuration **Front**, **Up**, **No flip**, in the second case, robot is in configuration **Front**, **Down**, **No flip**.

Python Code

Joints Config (joints)

Returns the robot configuration state for a set of robot joints. The configuration state is defined as: [REAR, LOWERARM, FLIP, turns]. The turns are reserved for future use.

Example:

```
# Retrieve all solutions for a given pose:
all_solutions = robot.SolveIK_All(pose, toolpose, framepose)
joints = []
# Iterate through each solution
for j in all_solutions:
    # Retrieve flags as a list for each solution
    conf_RLF = robot.JointsConfig(j).list()
   # Breakdown of flags:
    rear = conf_RLF[0] # 1 if Rear , 0 if Front
    lower = conf_RLF[1] # 1 if Lower, 0 if Upper (elbow)
    flip = conf_RLF[2] # 1 if Flip , 0 if Non flip (Flip is usually when Joint 5 is negative)
    # Look for a solution with Front and Elbow up configuration
    #if conf_RLF[0:2] == [0,0]:
    if rear == 0 and lower == 0:
        print("Solution found!")
        joints = j
        break
```

Sometimes when robot is moving on a specific path we get a sudden change of configuration because it goes through singularity. I would like to try to fix a desired robot configuration for some tasks with the help of RoboDK API for Matlab. When I am calculating Inverse kinematics in Matlab I get 8 unique solutions, but when I use RoboDK IK solver I get up to 21 solutions. So my first question is, how can I return only 8 unique solutions with robodk ik solver into Matlab?

Then I went checking how robodk is showing different configurations. Please take a look at the attached document and confirm if my integration is correct (with those green lights).

For the last question. It seems that there is already a solution for Python which can recognize different configurations (last page in the attached document). Is it possible to implement this in Matlab? If not, where can I find the program which uses function JointsConfig?

To summarize. When I get 8 unique IK solutions I would like to know for each solution in which configuration (f,r,u,d,f,nf) the robot is (in Matlab). I am already trying to manually limit joints for each configuration, but I think RoboDK can handle this better.