# Copyright 2015-2019 - RoboDK Inc. - https://robodk.com/ # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------- # This file is a POST PROCESSOR for Robot Offline Programming to generate programs # for an ABB robot with RoboDK (compatible with S4 to IRC5) # # To edit/test this POST PROCESSOR script file: # Select "Program"->"Add/Edit Post Processor", then select your post or create a new one. # You can edit this file using any text editor or Python editor. Using a Python editor allows to quickly evaluate a sample program at the end of this file. # Python should be automatically installed with RoboDK # # You can also edit the POST PROCESSOR manually: # 1- Open the *.py file with Python IDLE (right click -> Edit with IDLE) # 2- Make the necessary changes # 3- Run the file to open Python Shell: Run -> Run module (F5 by default) # 4- The "test_post()" function is called automatically # Alternatively, you can edit this file using a text editor and run it with Python # # To use a POST PROCESSOR file you must place the *.py file in "C:/RoboDK/Posts/" # To select one POST PROCESSOR for your robot in RoboDK you must follow these steps: # 1- Open the robot panel (double click a robot) # 2- Select "Parameters" # 3- Select "Unlock advanced options" # 4- Select your post as the file name in the "Robot brand" box # # To delete an existing POST PROCESSOR script, simply delete this file (.py file) # # ---------------------------------------------------- # More information about RoboDK Post Processors and Offline Programming here: # https://robodk.com/help#PostProcessor # https://robodk.com/doc/en/PythonAPI/postprocessor.html # ---------------------------------------------------- # Define a custom header (variable declaration) CUSTOM_HEADER = ''' ! ------------------------------- ! Define customized variables here ! ...''' # ---------------------------------------------------- # In general, one tab equals 4 spaces or a tab ONETAB = '\t' # Add specific pre header module for ABB robots (required for S4C) MODULE_PREHEAD = ['%%%',' VERSION:1',' LANGUAGE:ENGLISH','%%%'] # List known reserved names and known variables RESERVED_NAMES = ['tool0','work0','work1','clock1','reg1','reg2','reg3','reg4','reg5','alias','and','backward','case','connect','const','default','div','do','else','elseif','endfor','endfunc','endif','endmodule','endproc','endrecord','endtest','endtrap','endwhile','error','exit','false','for','from','func','goto','if','inout','local','mod','module','nostepin','not','noview','or','pers','proc','raise','readonly','record','retry','return','step','sysmodule','test','then','to','trap','true','trynext','undo','var','viewonly','while','with','xor'] KNOWN_ZONEDATA = [0,1,5,10,15,20,30,40,50,60,80,100,150,200] KNOWN_SPEEDS = [5,10,20,30,40,50,60,80,100,150,200,300,400,500,600,800,1000,1500,2000,2500,3000,4000,5000,6000,7000] for zd in KNOWN_ZONEDATA: RESERVED_NAMES.append('z%i'%zd) for sp in KNOWN_SPEEDS: RESERVED_NAMES.append('v%i'%sp) #----------------------------------------------------- # ---------------------------------------------------- # Import RoboDK tools from robodk import * def FilterName(namefilter, safechar='P', reserved_names=None): """Get a safe program or variable name that can be used for robot programming""" # remove non accepted characters for c in r' .-[]/\;,><&*:%=+@!#^|?^': namefilter = namefilter.replace(c,'') # remove non english characters char_list = (c for c in namefilter if 0 < ord(c) < 127) namefilter = ''.join(char_list) # Make sure we have a non empty string if len(namefilter) <= 0: namefilter = safechar # Make sure we don't start with a number if namefilter[0].isdigit(): namefilter = safechar + namefilter # Make sure we are not using a reserved name if reserved_names is not None: cnt = 1 namefilter_root = namefilter while namefilter.lower() in reserved_names: cnt = cnt + 1 namefilter = namefilter_root + "%i" % cnt # Add the name to reserved names reserved_names.append(namefilter) return namefilter def getSaveFolder(path_programs='/',popup_msg='Select a directory to save your program'): """Ask the user to select a folder to save a program or other file""" import sys if sys.version_info[0] < 3: # Python 2 import Tkinter as tkinter import tkFileDialog as filedialog else: # Python 3 import tkinter from tkinter import filedialog tkinter.Tk().withdraw() dirname = filedialog.askdirectory(initialdir=path_programs, title=popup_msg) if len(dirname) < 1: dirname = None return dirname def pose_2_str(pose): """Prints a pose target""" [x,y,z,q1,q2,q3,q4] = Pose_2_ABB(pose) return ('[%.3f,%.3f,%.3f],[%.8f,%.8f,%.8f,%.8f]' % (x,y,z,q1,q2,q3,q4)) def angles_2_str(angles): """Prints a joint target""" njoints = len(angles) # extend the joint target if the robot has less than 6 degrees of freedom if njoints < 6: angles.extend([0]*(6-njoints)) # Generate a string like: # [10,20,30,40,50,60] # with up to 6 decimals return '[%s]' % (','.join(format(ji, ".6f") for ji in angles[0:6])) def extaxes_2_str(angles, ratio=None): """Prints the external axes, if any""" # extend the joint target if the robot has less than 6 degrees of freedom njoints = len(angles) if njoints <= 6: # should print 9E9 for unset external axes # [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09] return '[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]' if ratio is not None: for i in range(6,len(angles)): angles[i] = ratio[i]*angles[i] extaxes_str = (','.join(format(ji, ".6f") for ji in angles[6:njoints])) if njoints < 12: extaxes_str = extaxes_str + ',' + ','.join(['9E9']*(12-njoints)) # If angles is [j1,j2,j3,j4,j5,j6,10,20], it will generate a string like: # [10,20,9E9,9E9,9E9,9E9] # with up to 6 decimals return '[%s]' % extaxes_str # ---------------------------------------------------- # Object class that handles the robot instructions/syntax class RobotPost(object): """Robot post object""" #------------------------ Customize your post using the following variables ---------------------- # Set the program file extension: PROG_EXT = 'mod' # IRC5 (newer controllers) #PROG_EXT = 'prg' # S4 (older controllers) # Set if we want to generate the main/first program as a Main() program. The name of the main/first program will be replaced by Main() # Example: PROC Main() instead of PROG Prog1() #FIRST_PROG_AS_MAIN = False # It will generate PROG Prog1() (or the name set in the RoboDK program) FIRST_PROG_AS_MAIN = True # It will generate PROG Main() # Default maximum number of lines per program. If a program exceeds this value it will then generate multiple "pages" (files) # This value can also be set in Tools-Options-Program-Maximum number of lines per program. MAX_LINES_X_PROG = 20000 # recommended for IRC5: 20000 #MAX_LINES_X_PROG = 5000 # recommended for S4: 5000 # Include subprograms in the main module: # Set to True to include sub programs in the same module INCLUDE_SUB_PROGRAMS = True # You can also specify the maximum lines of code allowed to include a subprogram in the main/first program # If a subprogram exceeds this number of lines of code it will be generated as a separate module MAX_SUBPROG_LINES = 500 # External dripfeed: set to True if you use an external tool to load the programs (such as RAPBOX): EXTERNAL_DRIPFEEDER = False # It will generate a main program to load subprograms. #EXTERNAL_DRIPFEEDER = True # It will not generate a main program to load subprograms. Each subprogram will be called Main(). This is suitable for RAPBOX. # Remote path to place programs in the robot controller # When program splitting takes place we need this path to load programs on the fly RAPID_REMOTE_PATH = "/hd0a/Enter-Serial-Number/HOME/RoboDK" # Set if you want to ignore the setup of the turntable (or external axis) on the controller # If you set it to True it means the controller will not be aware of the axis # (you can't move using a synchronized movement and the turntable will not hold the wobjdata) TURNTABLE_IGNORE = False # default: False # Specify the mechanical unit name for linear track and/or turntable, if required. # This name will be added to the wobjdata variable MECHANICAL_UNIT_NAME = 'Turntable_Mechanical_Unit_Name' #MECHANICAL_UNIT_NAME = 'T6003' #MECHANICAL_UNIT_NAME = 'STN1' # Enter the axes ratio for external axes, if required AXES_RATIO = None #AXES_RATIO = [1,1,1,1,1,1, -1,1,1] #------------------------------------------------------------------------------ #if EXTERNAL_DRIPFEEDER: # FIRST_PROG_AS_MAIN = False # other variables ROBOT_POST = 'ABB S4 to IRC5 including arc welding and 3D printing options' ROBOT_NAME = 'unknown' PROG = [] PROG_LIST = [] PROG_NAMES = [] PROG_FILES = [] nProgs = 0 TAB = '' LOG = '' SPEED_MMS = 500 SPEEDDATA = 'v500' #[500,500,5000,1000]' ZONEDATA = 'z1' TOOLDATA = 'tool0' WOBJDATA = 'wobj0' TOOL_DEF = [ONETAB + '! Tool variables: '] FRAME_DEF = [ONETAB + '! Reference variables:'] # Define the names that you do not want to redefine in the header (add list): FRAME_LIST = [] TOOL_LIST = [] LAST_TARGET = None # Default header: HEADER = [] nAxes = 6 CLAD_ON = False CLAD_DATA = 'clad1' ARC_ON = False ARC_WELDDATA = 'weld1' ARC_WEAVEDATA = 'weave1' ARC_SEAMDATA = 'seam1' # Important: This is usually provided by RoboDK automatically. Otherwise, override the __init__ procedure. nAxes = 6 # Important: This is usually set up by RoboDK automatically. Otherwise, override the __init__ procedure. AXES_TYPE = ['R','R','R','R','R','R'] # 'R' for rotative axis, 'L' for linear axis, 'T' for external linear axis (linear track), 'J' for external rotative axis (turntable) #AXES_TYPE = ['R','R','R','R','R','R','T','J','J'] #example of a robot with one external linear track axis and a turntable with 2 rotary axes AXES_TRACK = [] AXES_TURNTABLE = [] HAS_TRACK = False HAS_TURNTABLE = False FR_EXTERNAL_POSE = None # 3D Printing Extruder Setup Parameters: PRINT_E_AO = 5 # Analog Output ID to command the extruder flow PRINT_SPEED_2_SIGNAL = 0.10 # Ratio to convert the speed/flow to an analog output signal PRINT_FLOW_MAX_SIGNAL = 24 # Maximum signal to provide to the Extruder PRINT_ACCEL_MMSS = -1 # Acceleration, -1 assumes constant speed if we use rounding/blending # Internal 3D Printing Parameters PRINT_POSE_LAST = None # Last pose printed PRINT_E_LAST = 0 # Last Extruder length PRINT_E_NEW = None # New Extruder Length PRINT_LAST_SIGNAL = None # Last extruder signal def __init__(self, robotpost=None, robotname=None, robot_axes = 6, **kwargs): self.ROBOT_POST = robotpost self.ROBOT_NAME = robotname self.PROG = [] self.LOG = '' self.nAxes = robot_axes for k,v in kwargs.items(): if k == 'lines_x_prog': self.MAX_LINES_X_PROG = v elif k == 'axes_type': self.AXES_TYPE = v elif k == 'pose_turntable': pose_turntable = v self.FR_EXTERNAL_POSE = pose_turntable elif k == 'pose_rail': pose_rail = v #self.FR_RAIL_POSE = pose_rail for i in range(len(self.AXES_TYPE)): if self.AXES_TYPE[i] == 'T': self.AXES_TRACK.append(i) self.HAS_TRACK = True elif self.AXES_TYPE[i] == 'J': self.AXES_TURNTABLE.append(i) self.HAS_TURNTABLE = True def ProgStart(self, progname): #, new_page = False): progname = FilterName(progname,'P',RESERVED_NAMES) self.nProgs = self.nProgs + 1 if self.nProgs > 1 and not self.INCLUDE_SUB_PROGRAMS: return self.PROG_NAME = progname self.PROG_NAMES.append(progname) #self.TAB = ONETAB #self.addline('') #self.addline('PROC %s()' % progname) self.TAB = ONETAB + ONETAB # instructions need two tabs if self.HAS_TRACK or self.HAS_TURNTABLE: self.addline('! ActUnit %s;' % self.MECHANICAL_UNIT_NAME) self.addline('ConfJ \On;') self.addline('ConfL \Off;') def ProgFinish(self, progname): #, new_page = False): if self.nProgs > 1 and not self.INCLUDE_SUB_PROGRAMS: return progname = self.PROG_NAME # take already filtered name #self.TAB = ONETAB #self.addline('ENDPROC') self.PROG_LIST.append(self.PROG) self.PROG = [] def save_module(self, filesave, prog, module_name): with open(filesave, "w") as fid: for line in MODULE_PREHEAD: fid.write(line) fid.write('\n') fid.write('MODULE ' + module_name + '\n\n') for line in prog: fid.write(line) fid.write('\n') fid.write('\nENDMODULE\n') # Remember all files saved for FTP transfer self.PROG_FILES.append(filesave) def ProgSave(self, folder, progname, ask_user = False, show_result = False): # If required, ask the user to save the folder (ask_user = True if we selected "Save program as..." if ask_user or not DirExists(folder): folder = getSaveFolder(folder,'Select a directory to save your program') if folder is None: # The user selected the Cancel button return # Complete path to save the main program #filesave = folder + '/' + progname + '.mod' #------------------------------------------------------ # Save each program module # Store the files we want to display on the text editor files_display = [] # First: retrieve all small program calls and add them as subprograms module_list_prog = [] module_list_names = [] module_addtop = [] max_subprog_lines = min(self.MAX_LINES_X_PROG, self.MAX_SUBPROG_LINES) for i in range(len(self.PROG_LIST)): prgi = self.PROG_LIST[i] namei = self.PROG_NAMES[i] if i > 0 and len(prgi) < max_subprog_lines: # Add subprograms for the first module subprog_header = [ONETAB + 'PROC %s()' % namei] subprog_footer = [ONETAB + 'ENDPROC\n'] subprog_complete = subprog_header + prgi + subprog_footer module_addtop += subprog_complete else: module_list_prog.append(prgi) module_list_names.append(namei) # Save all module files for i in range(len(module_list_prog)): prgi_lines = module_list_prog[i] prgi_name = module_list_names[i] module_name = "MOD_" + prgi_name filesave = folder + '/' + prgi_name # extension is required if i == 0 and self.FIRST_PROG_AS_MAIN: prgi_name = 'Main' nLines = len(prgi_lines) nSubModules = math.ceil(nLines/self.MAX_LINES_X_PROG) # Header to add to the program prgi_header = [] # Check if we need to apply module splitting (temporary modules will be loaded on the fly) if nSubModules > 1: line_start = 0 lines_written = 0 file_names = [] prog_count = 0 prgi_header_tmp = [] if self.EXTERNAL_DRIPFEEDER: # Add custom header, tools and reference frames for the main program prgi_header_tmp.append(CUSTOM_HEADER) prgi_header_tmp.append('') prgi_header_tmp += self.TOOL_DEF prgi_header_tmp.append('') prgi_header_tmp += self.FRAME_DEF prgi_header_tmp.append('') while line_start < nLines: prog_count = prog_count + 1 line_end = line_start + self.MAX_LINES_X_PROG line_end = min(line_end, nLines) # Alternate program names so that 3 consecutive programs can live at the same time file_name_i = "%s_%i.%s" % (filesave, prog_count-1, self.PROG_EXT) file_names.append(file_name_i) temp_prgi = prgi_lines[line_start:line_end] tempmodule_name = "" tempmodule_header = [] # If we use an external dripfeeder all programs should be named Main() if self.EXTERNAL_DRIPFEEDER: tempmodule_name = "%s_%i" % (prgi_name, prog_count-1) # "MOD_Tmp" tempmodule_header = list(prgi_header_tmp) # make sure we create a copy tempmodule_header += [ONETAB + 'PROC Main()\n'] else: id_temp = (prog_count-1) % 3 + 1 tempmodule_name = "MOD_Tmp%i" % id_temp tempmodule_header = [ONETAB + 'PROC Prg_Tmp%i()\n' % id_temp] tempmodule_footer = ['',ONETAB+'ENDPROC'] temp_prgi = tempmodule_header + temp_prgi + tempmodule_footer # Save the module self.save_module(file_name_i, temp_prgi, tempmodule_name) line_start = line_end if not self.EXTERNAL_DRIPFEEDER: # Create the parent program that will call all the modules: add_variables = [''] prgi_parent = [] add_variables.append(ONETAB + 'LOCAL PERS string modulepath1 := "";') add_variables.append(ONETAB + 'LOCAL PERS string modulepath2 := "";') add_variables.append(ONETAB + 'LOCAL VAR loadsession load1;') add_variables.append(ONETAB + 'LOCAL VAR loadsession load2;') add_variables.append(ONETAB + 'LOCAL VAR string module_unload := "";') add_variables.append(ONETAB) #prgi_parent.append(ONETAB + ONETAB + 'PROC %s()' % prgi_name) #will be added later prgi_parent.append(ONETAB + ONETAB + '! This program has automatically been split into smaller subprograms') prgi_parent.append(ONETAB + ONETAB + 'TPErase;\n') # Unloading files does not always work #prgi_parent.append(ONETAB + ONETAB + '! Unload previous modules if necessary') #prgi_parent.append(ONETAB + ONETAB + 'IF StrLen(modulepath1) > 0 THEN') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'module_unload := modulepath1;') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'modulepath1 := "";') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'UnLoad module_unload;') #prgi_parent.append(ONETAB + ONETAB + 'ENDIF') #prgi_parent.append(ONETAB + ONETAB + 'IF StrLen(modulepath2) > 0 THEN') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'module_unload := modulepath2;') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'modulepath2 := "";') #prgi_parent.append(ONETAB + ONETAB + ONETAB + 'UnLoad module_unload;') #prgi_parent.append(ONETAB + ONETAB + 'ENDIF') #prgi_parent.append(ONETAB + ONETAB + '') for j in range(prog_count): file = getBaseName(file_names[j]) j_next = j+1 id_load = 1 + (j % 2) temp_module_name = 'modulepath%i' % id_load temp_load_name = 'load%i' % id_load prgi_parent.append(ONETAB + ONETAB + 'TPWrite "Starting Subprogram %i/%i";' % (j_next, prog_count)) if j == 0: prgi_parent.append(ONETAB + ONETAB + "! Load the first program (may take some time)") prgi_parent.append(ONETAB + ONETAB + '%s := "%s";' % (temp_module_name, (self.RAPID_REMOTE_PATH + '/' + file))) prgi_parent.append(ONETAB + ONETAB + "Load \Dynamic, %s;" % temp_module_name) else: prgi_parent.append(ONETAB + ONETAB + "! Wait for the program to be ready (fast)") prgi_parent.append(ONETAB + ONETAB + "WaitLoad %s;" % temp_load_name) if j < prog_count-1: file_next = getBaseName(file_names[j+1]) id_load_next = 1 + (j_next % 2) load_name_next = 'load%i' % id_load_next module_name_next = 'modulepath%i' % id_load_next prgi_parent.append(ONETAB + ONETAB + '%s := "%s";' % (module_name_next, (self.RAPID_REMOTE_PATH + '/' + file_next))) prgi_parent.append(ONETAB + ONETAB + "StartLoad %s, %s;" % (module_name_next, load_name_next)) id_mod = j % 3 + 1 prgi_parent.append(ONETAB + ONETAB + "%%\"MOD_Tmp%i:Prg_Tmp%i\"%%;" % (id_mod, id_mod)) prgi_parent.append(ONETAB + ONETAB + 'Unload %s;' % temp_module_name) prgi_parent.append(ONETAB + ONETAB + '%s := "";\n\n' % temp_module_name) prgi_parent.append(ONETAB + ONETAB + 'TPWrite "Program completed";\n') prgi_lines = prgi_parent module_addtop = add_variables + module_addtop prgi_header = [] if i == 0: # Add custom header, tools and reference frames for the main program prgi_header.append(CUSTOM_HEADER) prgi_header.append('') prgi_header += self.TOOL_DEF prgi_header.append('') prgi_header += self.FRAME_DEF prgi_header.append('') # Add program calls prgi_header += module_addtop module_addtop = [] prgi_header.append(ONETAB + 'PROC %s()' % prgi_name) prgi_footer = [ONETAB + 'ENDPROC'] prgi_complete = prgi_header + prgi_lines + prgi_footer filesave_complete = filesave + '.' + self.PROG_EXT self.save_module(filesave_complete, prgi_complete, module_name) # Remember saved files that are not temporary modules files_display.append(filesave_complete) print('SAVED: %s\n' % filesave_complete) # tell RoboDK the path of the saved file sys.stdout.flush() #------------------------------------------------------- # open file with default application if show_result: if type(show_result) is str: # Open file with provided application import subprocess p = subprocess.Popen([show_result] + files_display) elif type(show_result) is list: import subprocess p = subprocess.Popen(show_result + files_display) else: # open file with default application import os os.startfile(filesave) if len(self.LOG) > 0: mbox('Program generation LOG:\n\n' + self.LOG) def ProgSendRobot(self, robot_ip, remote_path, ftp_user, ftp_pass): """Send a program to the robot using the provided parameters. This method is executed right after ProgSave if we selected the option "Send Program to Robot". The connection parameters must be provided in the robot connection menu of RoboDK""" UploadFTP(self.PROG_FILES, robot_ip, remote_path, ftp_user, ftp_pass) def MoveJ(self, pose, joints, conf_RLF=None): """Add a joint movement""" self.addline('MoveAbsJ [%s,%s],%s,%s,%s \WObj:=%s;' % (angles_2_str(joints), extaxes_2_str(joints, self.AXES_RATIO), self.SPEEDDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) self.LAST_TARGET = None def calculate_time(self, distance, Vmax, Amax=-1): """Calculate the time to move a distance with Amax acceleration and Vmax speed""" if Amax < 0: # Assume constant speed (appropriate smoothing/rounding parameter must be set) Ttot = distance/Vmax else: # Assume we accelerate and decelerate tacc = Vmax/Amax; Xacc = 0.5*Amax*tacc*tacc; if distance <= 2*Xacc: # Vmax is not reached tacc = sqrt(distance/Amax) Ttot = tacc*2 else: # Vmax is reached Xvmax = distance - 2*Xacc Tvmax = Xvmax/Vmax Ttot = 2*tacc + Tvmax return Ttot def new_move(self, new_pose): """Implement the action on the extruder for 3D printing, if applicable""" if self.PRINT_E_NEW is None or new_pose is None: return # Skip the first move and remember the pose if self.PRINT_POSE_LAST is None: self.PRINT_POSE_LAST = new_pose return # Calculate the increase of material for the next movement add_material = self.PRINT_E_NEW - self.PRINT_E_LAST self.PRINT_E_LAST = self.PRINT_E_NEW # Calculate the robot speed and Extruder signal extruder_signal = 0 if add_material > 0: distance_mm = norm(subs3(self.PRINT_POSE_LAST.Pos(), new_pose.Pos())) # Calculate movement time in seconds time_s = self.calculate_time(distance_mm, self.SPEED_MMS, self.PRINT_ACCEL_MMSS) # Avoid division by 0 if time_s > 0: # This may look redundant but it allows you to account for accelerations and we can apply small speed adjustments speed_mms = distance_mm / time_s # Calculate the extruder speed in RPM*Ratio (PRINT_SPEED_2_SIGNAL) extruder_signal = speed_mms * self.PRINT_SPEED_2_SIGNAL # Make sure the signal is within the accepted values extruder_signal = max(0,min(self.PRINT_FLOW_MAX_SIGNAL, extruder_signal)) # Update the extruder speed when required if self.PRINT_LAST_SIGNAL is None or abs(extruder_signal - self.PRINT_LAST_SIGNAL) > 1e-6: self.PRINT_LAST_SIGNAL = extruder_signal #self.setDO(self.PRINT_E_AO, "%.3f" % extruder_signal) self.addline('ExtruderSpeed %.3f;' % extruder_signal) # Remember the last pose self.PRINT_POSE_LAST = new_pose def MoveL(self, pose, joints, conf_RLF=None): """Add a linear movement""" target = '' if pose is None: target = 'CalcRobT([%s,%s],%s \WObj:=%s)' % (angles_2_str(joints), extaxes_2_str(joints, self.AXES_RATIO), self.TOOLDATA, self.WOBJDATA) else: # Filter small movements #if self.LAST_POSE is not None and pose is not None: # # Skip adding a new movement if the new position is the same as the last one # if distance(pose.Pos(), self.LAST_POSE.Pos()) < 0.001 and pose_angle_between(pose, self.LAST_POSE) < 0.01: # return # Handle 3D printing Extruder integration self.new_move(pose) if conf_RLF is None: conf_RLF = [0,0,0] cf1 = 0 cf4 = 0 cf6 = 0 if joints is not None and len(joints) >= 6: cf1 = math.floor(joints[0]/90.0) cf4 = math.floor(joints[3]/90.0) cf6 = math.floor(joints[5]/90.0) [REAR, LOWERARM, FLIP] = conf_RLF cfx = 4*REAR + 2*LOWERARM + FLIP target = '[%s,[%i,%i,%i,%i],%s]' % (pose_2_str(pose), cf1, cf4, cf6,cfx, extaxes_2_str(joints, self.AXES_RATIO)) if self.ARC_ON: # ArcL p100, v100, seam1, weld5 \Weave:=weave1, z10, gun1; if self.ARC_ON == 2: self.addline('ArcLStart %s,%s,%s,%s,\Weave:=%s,%s,%s \WObj:=%s;' % (target, self.SPEEDDATA, self.ARC_SEAMDATA, self.ARC_WELDDATA, self.ARC_WEAVEDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) else: self.addline('ArcL %s,%s,%s,%s,\Weave:=%s,%s,%s \WObj:=%s;' % (target, self.SPEEDDATA, self.ARC_SEAMDATA, self.ARC_WELDDATA, self.ARC_WEAVEDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) self.ARC_ON = True elif self.CLAD_ON: self.addline('CladL %s,%s,%s,%s,%s \WObj:=%s;' % (target, self.SPEEDDATA, self.CLAD_DATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) else: self.addline('MoveL %s,%s,%s,%s \WObj:=%s;' % (target, self.SPEEDDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) self.LAST_TARGET = target def MoveC(self, pose1, joints1, pose2, joints2, conf_RLF_1=None, conf_RLF_2=None): """Add a circular movement""" target1 = '' target2 = '' if pose1 is None: target1 = 'CalcRobT([%s,%s], %s \WObj:=%s)' % (angles_2_str(joints1), extaxes_2_str(joints1, self.AXES_RATIO), self.TOOLDATA, self.WOBJDATA) else: if conf_RLF_1 is None: conf_RLF_1 = [0,0,0] cf1_1 = 0 cf4_1 = 0 cf6_1 = 0 if joints1 is not None and len(joints1) >= 6: cf1_1 = math.floor(joints1[0]/90.0) cf4_1 = math.floor(joints1[3]/90.0) cf6_1 = math.floor(joints1[5]/90.0) [REAR, LOWERARM, FLIP] = conf_RLF_1 cfx_1 = 4*REAR + 2*LOWERARM + FLIP target1 = '[%s,[%i,%i,%i,%i],%s]' % (pose_2_str(pose1), cf1_1, cf4_1, cf6_1,cfx_1, extaxes_2_str(joints1, self.AXES_RATIO)) if pose2 is None: target2 = 'CalcRobT([%s,%s],%s \WObj:=%s)' % (angles_2_str(joints2), extaxes_2_str(joints2, self.AXES_RATIO), self.TOOLDATA, self.WOBJDATA) else: if conf_RLF_2 is None: conf_RLF_2 = [0,0,0] cf1_2 = 0 cf4_2 = 0 cf6_2 = 0 if joints2 is not None and len(joints2) >= 6: cf1_2 = math.floor(joints2[0]/90.0) cf4_2 = math.floor(joints2[3]/90.0) cf6_2 = math.floor(joints2[5]/90.0) [REAR, LOWERARM, FLIP] = conf_RLF_2 cfx_2 = 4*REAR + 2*LOWERARM + FLIP target2 = '[%s,[%i,%i,%i,%i],%s]' % (pose_2_str(pose2), cf1_2, cf4_2, cf6_2,cfx_2, extaxes_2_str(joints2, self.AXES_RATIO)) if self.ARC_ON: # ArcL p100, v100, seam1, weld5 \Weave:=weave1, z10, gun1; self.addline('ArcC %s,%s,%s,%s,%s \Weave:=%s,%s,%s \WObj:=%s;' % (target1, target2, self.SPEEDDATA, self.ARC_SEAMDATA, self.ARC_WELDDATA, self.ARC_WEAVEDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) elif self.CLAD_ON: self.addline('CladC %s,%s,%s,%s,%s,%s \WObj:=%s;' % (target1, target2, self.SPEEDDATA, self.CLAD_DATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) else: self.addline('MoveC %s,%s,%s,%s,%s \WObj:=%s;' % (target1, target2, self.SPEEDDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) self.LAST_TARGET = target2 def setFrame(self, pose, frame_id=None, frame_name=None): """Change the robot reference frame""" #self.addline('rdkWObj := [FALSE, TRUE, "", [%s],[[0,0,0],[1,0,0,0]]];' % pose_2_str(pose)) if frame_name is not None: self.WOBJDATA = FilterName(frame_name,'w',RESERVED_NAMES) #self.addline('%s.uframe := [%s];' % (self.WOBJDATA, pose_2_str(pose))) set_data = '' if self.HAS_TURNTABLE: if self.TURNTABLE_IGNORE and self.FR_EXTERNAL_POSE is not None: pose = self.FR_EXTERNAL_POSE*pose set_data = '%s := [FALSE, TRUE, "", [%s],[[0,0,0],[1,0,0,0]]];' % (self.WOBJDATA, pose_2_str(pose)) else: set_data = '%s := [FALSE, FALSE, "%s", [%s],[[0,0,0],[1,0,0,0]]];' % (self.WOBJDATA, self.MECHANICAL_UNIT_NAME, pose_2_str(pose)) else: set_data = '%s := [FALSE, TRUE, "", [%s],[[0,0,0],[1,0,0,0]]];' % (self.WOBJDATA, pose_2_str(pose)) #print(self.WOBJDATA) #print(str(self.FRAME_LIST)) if self.WOBJDATA in self.FRAME_LIST: self.addline(set_data) else: self.FRAME_LIST.append(self.WOBJDATA) self.FRAME_DEF.append(ONETAB + 'PERS wobjdata %s' % set_data) def setTool(self, pose, tool_id=None, tool_name=None): """Change the robot TCP""" if tool_name is not None: self.TOOLDATA = FilterName(tool_name,'t',RESERVED_NAMES) #self.addline('%s.tframe := [%s];' % (self.TOOLDATA, pose_2_str(pose))) set_data = '%s := [TRUE,[%s],[1,[0,0,20],[1,0,0,0],0,0,0.005]];' % (self.TOOLDATA, pose_2_str(pose)) if self.TOOLDATA in self.TOOL_LIST: self.addline(set_data) else: self.TOOL_LIST.append(self.TOOLDATA) self.TOOL_DEF.append(ONETAB + 'PERS tooldata %s' % set_data) def Pause(self, time_ms): """Pause the robot program""" if time_ms <= 0: self.addline('STOP;') else: self.addline('WaitTime %.3f;' % (time_ms*0.001)) def setSpeed(self, speed_mms): """Changes the robot speed (in mm/s)""" # force a specific speed limitation max_speed_mms = 7000 min_speed_mms = 0.01 speed_mms = max(min(speed_mms, max_speed_mms), min_speed_mms) self.SPEED_MMS = speed_mms if speed_mms in KNOWN_SPEEDS: self.SPEEDDATA = 'v%i' % int(speed_mms) else: self.SPEEDDATA = '[%.2f,500,5000,1000]' % speed_mms def setAcceleration(self, accel_mmss): """Changes the robot acceleration (in mm/s2)""" self.addlog('setAcceleration is not defined') def setSpeedJoints(self, speed_degs): """Changes the robot joint speed (in deg/s)""" self.addlog('setSpeedJoints not defined') def setAccelerationJoints(self, accel_degss): """Changes the robot joint acceleration (in deg/s2)""" self.addlog('setAccelerationJoints not defined') def setZoneData(self, zone_mm): """Changes the zone data approach (makes the movement more smooth)""" if zone_mm < 0: self.ZONEDATA = 'fine' else: if zone_mm in KNOWN_ZONEDATA: self.ZONEDATA = 'z%i' % int(zone_mm) else: zone_mm_O = zone_mm * 1.5 zone_mm_O2 = 0.1*zone_mm_O self.ZONEDATA = '[FALSE,%.1f,%.1f,%.1f,%.1f,%.1f,%.1f]' % (zone_mm,zone_mm_O,zone_mm_O,zone_mm_O2,zone_mm_O,zone_mm_O2) def setDO(self, io_var, io_value): """Set a Digital Output""" if type(io_var) != str: # set default variable name if io_var is a number io_var = 'D_OUT_%s' % str(io_var) if type(io_value) != str: # set default variable value if io_value is a number if io_value > 0: io_value = '1' else: io_value = '0' # at this point, io_var and io_value must be string values self.addline('SetDO %s, %s;' % (io_var, io_value)) def setAO(self, io_var, io_value): """Set an Analog Output""" self.setDO(io_var, io_value) def waitDI(self, io_var, io_value, timeout_ms=-1): """Waits for an input io_var to attain a given value io_value. Optionally, a timeout can be provided.""" if type(io_var) != str: # set default variable name if io_var is a number io_var = 'D_IN_%s' % str(io_var) if type(io_value) != str: # set default variable value if io_value is a number if io_value > 0: io_value = '1' else: io_value = '0' # at this point, io_var and io_value must be string values if timeout_ms < 0: self.addline('WaitDI %s, %s;' % (io_var, io_value)) else: self.addline('WaitDI %s, %s, \MaxTime:=%.1f;' % (io_var, io_value, timeout_ms*0.001)) def RunCode(self, code, is_function_call = False): """Adds code or a function call""" if is_function_call: code = code.replace(' ','_') code_lower = code.lower() if code_lower.startswith('arclstart'): if not self.ARC_ON: self.ARC_ON = 2 # provke first move with ArcLStart return elif code_lower.startswith('arclend'): self.ARC_ON = False # add a new redundant move self.addline('ArcLEnd %s,%s,%s,%s,\Weave:=%s,%s,%s \WObj:=%s;' % (self.LAST_TARGET, self.SPEEDDATA, self.ARC_SEAMDATA, self.ARC_WELDDATA, self.ARC_WEAVEDATA, self.ZONEDATA, self.TOOLDATA, self.WOBJDATA)) return elif code_lower.startswith('cladlstart'): self.CLAD_ON = True return elif code_lower.startswith('cladlend'): self.CLAD_ON = False elif code_lower.startswith("extruder("): # If the program call is Extruder(123.56), we extract the number as a string and convert it to a number self.PRINT_E_NEW = float(code[9:-1]) # it needs to retrieve the extruder length from the program call # Do not generate the program call return code_safe = FilterName(code) self.addline(code_safe + ';') else: if code.startswith('END') or code.startswith('ELSEIF'): # remove tab after ENDWHILE or ENDIF self.TAB = self.TAB[:-len(ONETAB)] self.addline(code.replace('\t',' '))# replace each tab by 2 spaces if code.startswith('IF ') or code.startswith('ELSEIF ') or code.startswith('WHILE '): # add tab (one tab = two spaces) self.TAB = self.TAB + ONETAB def RunMessage(self, message, iscomment = False): """Add a joint movement""" if iscomment: self.addline('! ' + message) else: self.addline('TPWrite "%s";' % message) # ------------------ private ---------------------- def addline(self, newline): """Add a program line""" if self.nProgs > 1 and not self.INCLUDE_SUB_PROGRAMS: return self.PROG += [self.TAB + newline] def addlog(self, newline): """Add a log message""" if self.nProgs > 1 and not self.INCLUDE_SUB_PROGRAMS: return self.LOG = self.LOG + newline + '\n' # ------------------------------------------------- # ------------ For testing purposes --------------- def Pose(xyzrpw): [x,y,z,r,p,w] = xyzrpw a = r*math.pi/180 b = p*math.pi/180 c = w*math.pi/180 ca = math.cos(a) sa = math.sin(a) cb = math.cos(b) sb = math.sin(b) cc = math.cos(c) sc = math.sin(c) return Mat([[cb*ca, ca*sc*sb - cc*sa, sc*sa + cc*ca*sb, x],[cb*sa, cc*ca + sc*sb*sa, cc*sb*sa - ca*sc, y],[-sb, cb*sc, cc*cb, z],[0,0,0,1]]) def test_post(): """Test the post with a basic program""" robot = RobotPost(r'ABB_RAPID_IRC5', r'ABB IRB 6700-155/2.85', 6, axes_type=['R','R','R','R','R','R']) robot.ProgStart(r'Prog1') robot.RunMessage(r'Program generated by RoboDK 3.1.5 for ABB IRB 6700-155/2.85 on 18/05/2017 11:02:41', True) robot.RunMessage(r'Using nominal kinematics.', True) robot.setFrame(Pose([0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]),-1,r'ABB IRB 6700-155/2.85 Base') robot.setTool(Pose([380.000000, 0.000000, 200.000000, 0.000000, 90.000000, 0.000000]),1,r'Tool 1') robot.setSpeed(2000.000) robot.MoveJ(Pose([2103.102861, 0.000000, 1955.294643, -180.000000, -3.591795, -180.000000]), [0.00000, 3.93969, -14.73451, 0.00000, 14.38662, -0.00000], [0.0, 0.0, 0.0]) robot.MoveJ(Pose([2065.661612, 700.455189, 1358.819971, 180.000000, -3.591795, -180.000000]), [22.50953, 5.58534, 8.15717, 67.51143, -24.42689, -64.06258], [0.0, 0.0, 1.0]) robot.Pause(500.0) robot.setSpeed(100.000) #robot.RunCode(r'ArcLStart', True) robot.MoveL(Pose([2065.661612, 1074.197508, 1358.819971, 149.453057, -3.094347, -178.175378]), [36.19352, 22.86988, -12.37860, 88.83085, -66.57439, -81.72795], [0.0, 0.0, 1.0]) robot.MoveC(Pose([2468.239418, 1130.614560, 1333.549802, -180.000000, -3.591795, -180.000000]), [28.37934, 35.45210, -28.96667, 85.54799, -28.41204, -83.00289], Pose([2457.128674, 797.241647, 1156.545094, 180.000000, -37.427062, -180.000000]), [18.58928, 43.77805, -40.05410, 155.58093, -37.76022, -148.70252], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2457.128674, 797.241647, 1156.545094, 180.000000, -37.427062, -180.000000]), [18.58928, 43.77805, -40.05410, 155.58093, -37.76022, -148.70252], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2469.684137, 397.051453, 1356.565545, -180.000000, -3.591795, -180.000000]), [10.73523, 21.17902, -10.22963, 56.13802, -12.93695, -54.77268], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2494.452316, 404.343933, 1751.146172, -180.000000, -3.591795, -180.000000]), [10.80299, 25.05092, -31.54821, 132.79244, -14.76878, -133.06820], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2494.452316, 834.649436, 1751.146172, -180.000000, -3.591795, -180.000000]), [21.49850, 33.45974, -43.37980, 121.21995, -25.32130, -122.42907], [0.0, 0.0, 1.0]) robot.setZoneData(5.000) robot.MoveL(Pose([2147.781731, 834.649436, 1772.906995, -180.000000, -3.591795, -180.000000]), [25.21677, 13.65153, -17.95808, 107.03387, -26.40518, -107.19412], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2147.781731, 375.769504, 1772.906995, -180.000000, -3.591795, -180.000000]), [11.97030, 5.74930, -8.96838, 119.55454, -13.76610, -119.51539], [0.0, 0.0, 1.0]) robot.MoveL(Pose([2147.781731, 61.363728, 1772.906995, -180.000000, -3.591795, -180.000000]), [1.98292, 3.75693, -6.84136, -16.54793, 6.96416, 16.55673], [0.0, 0.0, 0.0]) #robot.RunCode(r'ArcLEnd', True) robot.MoveL(Pose([2147.781731, 275.581430, 1772.906995, -180.000000, -3.591795, -180.000000]), [8.83799, 4.80606, -7.95436, 127.27676, -11.11070, -127.24243], [0.0, 0.0, 1.0]) robot.ProgFinish(r'Prog1') for prgi in robot.PROG_LIST: for line in prgi: print(line) print('') print('') if len(robot.LOG) > 0: mbox('Program generation LOG:\n\n' + robot.LOG) input("Press Enter to close...") if __name__ == "__main__": """Function to call when the module is executed by itself: test""" test_post()